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Figure 1: Our self-supervised tone mapping operator is directly guided by the input HDR image and a novel feature contrast masking loss
that takes into account masking effects present in the Human Visual System. We minimize the difference between the HDR image and the tone
mapped image in feature space, after applying our contrast masking model. Left: The input HDR image and our tone mapped result. Right:
VGG feature map (1st layer, 12th channel) and our corresponding feature contrast masking response that effectively enhances low contrast
image details while compressing high contrasts.

Abstract

High Dynamic Range (HDR) content is becoming ubiquitous due to the rapid development of capture technologies. Neverthe-
less, the dynamic range of common display devices is still limited, therefore tone mapping (TM) remains a key challenge for
image visualization. Recent work has demonstrated that neural networks can achieve remarkable performance in this task when
compared to traditional methods, however, the quality of the results of these learning-based methods is limited by the train-
ing data. Most existing works use as training set a curated selection of best-performing results from existing traditional tone
mapping operators (often guided by a quality metric), therefore, the quality of newly generated results is fundamentally limited
by the performance of such operators. This quality might be even further limited by the pool of HDR content that is used for
training. In this work we propose a learning-based self-supervised tone mapping operator that is trained at test time specifically
for each HDR image and does not need any data labeling. The key novelty of our approach is a carefully designed loss function
built upon fundamental knowledge on contrast perception that allows for directly comparing the content in the HDR and tone
mapped images. We achieve this goal by reformulating classic VGG feature maps into feature contrast maps that normalize
local feature differences by their average magnitude in a local neighborhood, allowing our loss to account for contrast masking
effects. We perform extensive ablation studies and exploration of parameters and demonstrate that our solution outperforms
existing approaches with a single set of fixed parameters, as confirmed by both objective and subjective metrics.

CCS Concepts
• Computing methodologies → Computational photography; Neural networks; Image processing;

1. Introduction

High Dynamic Range (HDR) images can reproduce real-world
appearance by encoding wide luminance ranges. With the fast-

paced developments in capturing devices, access to HDR image
and video is becoming commonplace. Nevertheless, the majority of
widespread displays are still limited in the dynamic range they can
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reproduce, preventing direct reproduction of HDR content. There-
fore, the use of tone mapping techniques is yet needed in order to
adapt such content to current display capabilities.

Different tone mapping techniques have been developed for
decades [RHD∗10, BADC17], however the performance of even
the most prominent techniques strongly depends on the HDR image
content and specific parameter settings [ZWZW19,GJ21,PKO∗21].
Subjective evaluations of these different techniques indicate that
both specific algorithms as well as default parameter settings, as
often proposed by their respective authors, do not generalize well
across scenes [LCTS05,YBMS05,ČWNA08]. In these cases, man-
ual selection of a suitable algorithm and experience in fine-tuning
its parameters might be required for high-quality results. This hin-
ders smooth adoption of HDR technology and is the key obsta-
cle in developing machine learning solutions, as we discuss next.
Recently, an increasing number of learning-based tone mapping
methods have been proposed that show huge potential in terms of
generality and quality with respect to their traditional algorithm-
based predecessors. However, there are still some shortcomings.
First, most learning-based models regard tone mapping as an im-
age restoration task and optimize the network in a fully supervised
manner, which requires high-quality paired HDR and tone mapped
training data. Given a set of HDR scenes as training set, the Tone
Mapping Quality Index (TMQI) [YW12] is typically used to select
the best tone mapped image for each scene from a preexisting set of
tone mapped results, limiting the quality of newly generated results
to that of preexisting methods [ZWZW19,RSV∗19,PKO∗21]. And
second, since such methods treat tone mapping as an image restora-
tion task instead of an information reduction process, they usually
involve large-scale networks. Motivated by these observations, in
this work we seek an alternative solution that allows for reducing
the network size and optimizes information reduction for a given
HDR image content.

Since image contrast is arguably one of the key cues in the
Human Visual System (HVS) while seeing and interpreting im-
ages [Pal99], we aim at reproducing perceived contrast in HDR
scenes while also ensuring structural fidelity by reproducing vis-
ible image details. To this end, we propose a simple image-
specific, self-supervised tone mapping network that is trained at
test time and does not require any data labeling. The only train-
ing data is the input HDR image, and the key novelty in our ap-
proach is the loss function that directly compares the content in
the HDR and tone mapped images. Since the compared signals
present different luminance and contrast ranges, a direct compu-
tation of the loss in the feature space, as in e.g., perceptual VGG
loss [SZ14, JAFF16], leads to sub-optimal results as we demon-
strate in Sec. 4. To mitigate this problem, we first propose an
adaptive µ-law compression that accounts for the scene brightness
and brings HDR image histograms closer to those of low dynamic
range images (Fig. 4). Then, motivated by contrast perception liter-
ature [LF80,Fol94,WS97,DZLL00], we introduce in our loss func-
tion a non-linearity considering both the HVS response for stronger
contrasts and visual neighborhood masking, and we model it in the
network’s feature space. To this end, we first formulate a local con-
trast measure in the feature space, normalizing local feature dif-
ferences by their average magnitude in a local neighborhood. This
also allows for further abstraction from the magnitude difference

between HDR and LDR signals. Then, we introduce a compressive
non-linearity as a function of feature contrast magnitude for the
HDR signal, so that for higher magnitudes any departs in feature
contrast are less strongly penalized in the loss function. This di-
rectly translates into compressing higher contrasts while preserving
image details in the tone mapped images generated by our network.
Finally, we also introduce feature contrast neighborhood masking,
so that the loss function penalizes more weakly changes in feature
contrast when similar features are present in the spatial neighbor-
hood of the image.

We perform extensive ablation studies and exploration of pa-
rameters and demonstrate that our solution outperforms existing
approaches for a single set of parameters, as confirmed by both ob-
jective and subjective metrics. Our contributions are as follows:

• We present a self-supervised tone mapping network that takes
as an input multiple exposures derived from an HDR image and
produces state-of-the-art tone mapping results, overcoming the
need for annotated HDR-tone mapped image pairs for training.

• We propose a perceptually-inspired feature contrast masking loss
function which is derived in feature space. This function effec-
tively enables a direct supervision of the tone mapping process
by the HDR image content so that perceived luminance contrast
losses in the tone mapped results are minimized.

• We introduce an adaptive version of µ-law compression that
brings HDR histograms closer to those typically observed in
low dynamic range tone-mapped images. This facilitates self-
supervision by the input HDR image.

Our code is available at: https://self-supervisedTMO.mpi-inf.mpg.de.

2. Related work

In this section we first summarize related research on contrast per-
ception modeling, and then we discuss tone mapping techniques
with emphasis on those that explicitly process contrast as well as
more recent learning-based methods.

2.1. Contrast perception modeling

Visual sensitivity is affected by a number of key image dimen-
sions such as luminance level [AJP92], spatial and temporal fre-
quency [Rob66], or local image contrast [Wat89], as well as their
interactions. In particular, changes in sensitivity as a function of
local image contrast are generally termed masking effects. There
are two main masking effects related to spatial contrast percep-
tion that have been widely studied and applied to computer graph-
ics applications: contrast self-masking and visual contrast masking.
Contrast self-masking [DZLL00] is characterized by a strong non-
linearity that allows for stronger absolute changes for higher supra-
threshold contrasts than for lower near-threshold contrasts before
such changes become noticeable [KW96]. Visual masking (also
called neighborhood masking) [LF80, Fol94, WS97, DZLL00] is a
phenomenon in which sensitivity is locally reduced with increases
in image local contrast [Dal92]. When contrasts with similar spa-
tial frequencies are present in a close neighborhood, the thresholds
for detection of lower contrasts and for change discrimination of
higher contrast rise. To model this effect, the input image contrast
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is decomposed into frequency bands using a filter bank such as a
Laplacian pyramid [Pel90, MDC∗21], a cortex transform [Dal92],
wavelets [DZLL00], or discrete cosine transforms (DCTs) [Wat93],
and then the visual masking is modeled for each frequency band.

Modeling contrast self-masking and neighborhood masking has
been proven to be beneficial for several applications including im-
age [DZLL00] or video [YJS∗21] compression, image quality eval-
uation [Lub95,MDC∗21], rendering [BM98,RPG99], and foveated
rendering [TAKW∗19]. Existing works apply such contrast percep-
tion models in the primary image contrast domain (or disparity do-
main [DER∗10]), and employ predefined filter banks. Instead, we
use a neural network and compute per-channel contrast signals over
feature maps, where optimal filters are learned for the task at hand,
and we formulate a novel loss function that models contrast self-
masking and neighborhood masking in the feature contrast domain.

2.2. Tone mapping techniques

We first summarize traditional global and local tone mapping oper-
ators and then discuss learning-based tone mapping techniques.

2.2.1. Traditional methods

Traditional tone mapping methods can be roughly categorized
into global methods, that apply the same transfer function to the
whole image [DMAC03, JH93, LRP97, MDK08], and local meth-
ods, in which the applied function varies for each pixel by tak-
ing into account the influence of neighborhood pixels [FLW02,
RSSF02, DD02, MMS06]. An interested reader may refer to ex-
tensive surveys that discuss in length these methods [RHD∗10,
BADC17, MMS15]. Some existing works have proposed a num-
ber of techniques for selecting or generating various tone map-
ping operators tailored to different target images or applications.
For instance, Mantiuk and Seidel [MS08] propose to use a generic
model to approximate both global and local methods, which is use-
ful for backward-compatible HDR image compression and com-
parisons of existing tone mapping algorithms. With the goal of
displaying HDR images on LDR displays efficiently using the
GPU, Banterle et al. [BAS∗16] segment input HDR images ac-
cording to luminance zones and then select the best performing
tone mapping operator for each zone. Debattista [Deb18] uses ge-
netic programming to automatically generate tone mapping oper-
ators suitable for different applications (such as visualization, fea-
ture mapping or compression). Other techniques, such as exposure
fusion [MKVR07,RC09] directly composite a high-quality low dy-
namic range image by fusing a set of bracketed exposures, bypass-
ing the reconstruction of an HDR image. In our pipeline we also
leverage several input exposures to obtain the final tone mapped
image, however, the tone mapping process is actively guided by
our contrast masking loss in feature space.

Recently, a number of model-based tone mapping algorithms
achieving higher performance have been proposed. We introduce
them here and include them in our comparisons in Sec. 4.2.1. Shan
et al. [SJB09] introduce a method that operates in overlapping win-
dows over the image in which dynamic range compression is opti-
mized globally for the image while window-based local constraints

are also satisfied. This allows for both small details and large im-
age structures to be preserved. Ma et al. [MYZW15] propose an it-
erative algorithm that directly optimizes the resulting tone mapped
image to maximize structural fidelity and statistical naturalness fol-
lowing a new tone mapping quality metric based on TMQI. Liang
et al. [LXZ∗18] design a hybrid l1-l0 multi-scale decomposition
model that decomposes the image into a base layer, to which an l1
sparsity term is imposed to enforce piecewise smoothness, and a
detail layer, to which an l0 sparsity term is imposed as structural
prior, in order to avoid halos and over-enhancement of contrast.
Li et al. [LJZ18] propose to decompose HDR images into color
patches and cluster them according to different statistics. Then, for
each cluster they apply principal component analysis to find a more
compact domain for applying different tone mapping curves. In
general, these traditional methods are model-based and need to in-
troduce prior information, furthermore, they usually require careful
parameter tuning which is not user-friendly for non-expert users.

The closest to our goals are gradient domain techniques [FLW02,
MMS06, STO16] that effectively compress/enhance contrast. Fat-
tal et al. [FLW02] consider gradients between neighboring pix-
els, while Shibata et al. [STO16] employ a base- and detail-layer
decomposition, manually pre-selecting parameters to guide con-
trast manipulations. Mantiuk et al. [MMS06] proposes a multi-
resolution contrast processing that is driven by a perceptual contrast
self-masking model [KW96]. In contrast, our model additionally
takes into account neighborhood masking effects, further, contrast
masking effects are computed in feature domain instead of tradi-
tional image domain.

2.2.2. Learning-based methods

Due to the great success of deep learning in image processing tasks,
new learning-based tone mapping operators have been proposed
during the last years. Most of these works fall under the category
of supervised methods, i.e., they need HDR-LDR (low dynamic
range) image pairs in order to train their proposed models. Patel
et al. [PSR17] propose to train a generative adversarial network
(GAN) in order to learn a combination of traditional tone map-
ping operators that allows for better generalization across scenes.
During training, in order to select the target tone mapped image,
they select the best scoring tone mapped image (using the TMQI
metric [YW12]) among a set of tone mapped results using differ-
ent traditional methods. Rana et al. [RSV∗19] instead propose us-
ing a multi-scale conditional generative adversarial network, and
then follow the same procedure for selecting tone mapped images
for training. Zhang et al. [ZWZW19] use a carefully designed loss
function to push tone mapped images into the natural image mani-
fold. The target tone mapped images for training are manually ad-
justed by photographers using the tone mapping operators available
in Photomatix2 and HDRToolbox [BADC17]. Su et al. [SWL∗21]
propose an explorable tone mapping network based on Bicycle-
GAN [ZZP∗17] and use LuminanceHDR to generate suitable tone
mapped target images, selecting the top-scoring ones using the
TMQI metric. To mitigate the challenge of finding target tone
mapped images suitable for training, Panetta et al. [PKO∗21] use
low-light images based on the insight that they have under-exposed
regions that model well the distribution of HDR images while also
having characteristics considered as under-exposed when viewed
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in displays with limited dynamic range. The method proposed by
Yang et al. [YXS∗18] allows to recover image details by train-
ing an end-to-end network for reconstructing HDR images from
LDR ones, and then performing tone mapping. They use Adobe
Photoshop as a black box to empirically generate ground truth
tone mapped images with human supervision. Recently, Zhang et
al. [ZZWW21] propose a semi-supervised method by combining
unsupervised losses and a supervised loss. In this manner, their
method only requires a few HDR-LDR pairs with well tone mapped
images. For the supervised loss term, they use LDR images from
the previously discussed work of Zhang et al. [ZWZW19]. In-
spired by image quality assessment metrics, Guo and Jiang [GJ21]
also propose a semi-supervised method and obtain HDR-LDR pairs
from fine-tuning raw bracketed exposures using Adobe Photoshop.

These learning methods are intrinsically limited by the input
data they see during training. Therefore, using images tone mapped
with existing methods as target, although allows for training new
models with better generalization, fundamentally limits the qual-
ity that such new learned models can achieve. In contrast, we pro-
pose a self-supervised network that only takes as input the original
HDR image for training, and learns a tone mapping operator re-
lying on a carefully designed loss function that takes into account
contrast masking effects present in the Human Visual System. To
our knowledge, the only work that does not need carefully selected
HDR-LDR image pairs is the work of Hou et al. [HDQ17], how-
ever, they rely on combining feature losses from different layers
chosen empirically and only demonstrate their approach for two
selected images.

3. Proposed Method

In this section we present our image-specific, self-supervised tone
mapping network, whose structure is shown in Fig. 2. The input
HDR image is first normalized, and then decomposed into three
differently exposed LDR images (Sec. 3.1). The three exposures
are first transformed into feature space by an encoder with shared
weights. Then, they are fused in this feature space to produce a
corrective residual that is then decoded, and finally added to the
three input exposures to generate the output tone mapped image
(Sec. 3.2). To compute the training loss, first the normalized HDR
image is processed by an adaptive µ-law compression that brings
its distribution closer to typical LDR image histogram distribution
(Sec. 3.3). Then, the processed HDR image along with its tone
mapped counterpart go through a VGG network to derive their
respective feature spaces (we employ VGG19 [SZ14], which we
denote VGG for brevity). Finally, we compute the L1 loss in fea-
ture space, however, instead of the standard perceptual loss between
corresponding features [SZ14, JAFF16], we compute feature con-
trast and model contrast self-masking and neighborhood masking
effects (Sec. 3.4).

3.1. Multiple Exposure Selection

HDR images are stored in linear intensity space and might feature
extremely large dynamic range compared to LDR images. More-
over, the distribution of pixel intensities in the HDR image is also
unbalanced, where pixels with very high intensity have large values

but correspond small image regions, while low-brightness pixels
usually cover larger portions of the image [EKD∗17, PKO∗21]. In
neural network applications, to align such HDR image characteris-
tics to those of LDR images, the logarithm of HDR pixel intensities
is often applied [EKD∗17, ZWZW19, SWL∗21]. This way a com-
pressive response of the HVS to increasing luminance values (the
Weber-Fechner law) is modeled as it is common in the tone map-
ping literature [RHD∗10]. However, as we detail in Sec. 4.3, we
found that our tone mapping network leads to better results when
multiple differently exposed images with linear pixel intensity re-
lation are used instead.

As HDR images are typically stored as relative positive values,
before choosing the exposures, we first derive the normalized IHDR

image, where each pixel value is multiplied by 0.5, and divided
by the mean of the original HDR image ISRC intensity [EKM17].
To estimate the exposure range for each exposure we employ an
automatic procedure originally proposed for HDR image quality
evaluation [ANSAM21]. This way we obtain the low elow and high
ehigh exposures† , and additionally we derive an intermediate third
exposure as emid = (elow + ehigh)/2. As we show in detail in the
supplemental (Sec. S1.3), we found that these three exposures lead
to overall good results. Only two exposures are not sufficient for
capturing all the dynamic range of challenging scenes, and four or
more exposures do not improve the quality of the results, while
increasing the computation time. An alternative for exposure selec-
tion is the work of Gallo et al. [GTM∗12], which provides an op-
timization method for exposure metering based on the input HDR
histogram. This approach guarantees that all pixels will be well rep-
resented (avoiding saturation), however, the resulting images are
non-linear LDR images quantized in 8-bits. Note that in contrast to
standard multi-exposure 8-bit LDR images, our three floating-point
exposure selection is sufficient to represent high dynamic range in-
formation for tone mapping purposes. As we do not perform pixel
quantization, the only information loss is due to clipping higher
intensities into the range [0,1] with the clip() function:

Ie-x = clip(2ex IHDR), (1)

where Ie-x represents one of multi-exposure images with the expo-
sure factor ex.

3.2. Tone Mapping Network

The tone mapping network is composed of an encoder E , a feature
module F , and a decoder D. All details on the number of layers,
as well as the per-layer kernel size, channel number, and stride ex-
tent are specified in the bottom-left corner of Fig. 2. All layers use
Relu [NH10] as the activation function except for the last layer us-
ing sigmoid. The three input exposures are used as an input to the
encoder network E with shared weights between the exposures. The
resulting feature maps are used to derive a corrective residual signal
(module F) that after decoding (D) is added up with the three ex-
posures. Finally, the resulting image is fitted into the range [0,1] by

† Note that the goal of Andersson et al. [ANSAM21] is to get aesthetical
results. We divide by two both elow and ehigh, resulting in less dark and less
bright exposures, respectively. Our goal is that all relevant content is within
reasonable pixel values (not too dark, not too bright).
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Figure 2: Overview of our method. The input HDR image ISRC is first normalized into IHDR, and then three exposures Ie-low, Ie-mid, and Ie-high

are selected. A network with learnable HDR-image-specific weights is used to encode (E) each exposure into feature space (F), where a
corrective residual is derived, that after decoding (D) is summed up with all three exposures. The resulting image values are compressed into
the range of [0,1] by a sigmoid function, and the output tone mapped image ITM is obtained. The appearance and contrast of ITM is directly
guided by the normalized HDR IHDR that is further processed into Iµ using an adaptive µ-law compression. Both ITM and Iµ are transformed
into feature space (VGG) and compared taking into account our novel contrast masking model f . As shown in the bottom-right inset Iµ is
transformed into the feature space VGG(Iµ), where the ratio between feature contrast self-masking Ms and feature contrast neighborhood
masking Mn define the feature contrast masking model f (VGG(Iµ)). Finally, the L1 loss is computed between f (VGG(Iµ)) and f (VGG(ITM)).
The inset in the bottom-left shows the structure of decoder (E), feature space residual correction (F), and decoder (D) networks.

a sigmoid function (Fig. 2) to produce the final tone mapped image
ITM. While similar residual corrections have been proposed in the
past [HZRS16, XZR18], our residual has two goals specific to our
application. First, Iµ (Sec. 3.3) is outside the range [0,1] as shown
in Fig. 5 (left) so it needs to be compressed. Through our perceptual
loss, the corrective residual is trained such that deviations from the
compressed HDR image Iµ in the tone mapped image ITM are more
strongly penalized for low contrast image details than for high con-
trast details, encouraging their compression. This way the desired
appearance of the final tone mapped image ITM is achieved, while an
exact reconstruction of Iµ is avoided (Fig. 3 and the insets in Fig. 5
show the relatively poor quality of Iµ). Second, during our exposure
selection, darker pixels in IHDR (Fig. 2) are linearly scaled according
to the three selected exposures and brighter pixels may be affected
in some cases by clipping in Ie-high or Ie-mid (Eq. 1). The residual can
be seen as a correction that, when added to the three exposures and
after applying the sigmoid function, brings each pixel to the right
intensity value while accounting for the clipping non-linearity and
assuring perceptually plausible contrast processing (following the
loss guided by Iµ). In Fig. 3 we show an example of the residual
together with the three exposures that it corrects.

3.3. Adaptive µ-law compression

Our image-specific tone mapping network is self-supervised by the
input HDR image ISRC that is transformed by the VGG network into

𝐼e−low 𝐼e−mid 𝐼e−high

𝐼μ 𝐼TM

-1.0 0.0 1.0

𝐼res

Figure 3: Visualization of three input exposures (Ie-low, Ie-mid, and
Ie-high), corresponding compressed Iµ and resulting tone mapped im-
age ITM, together with the residual image Ires displayed in false color.
For visualization, positive (red) and negative (blue) values in the
residual are normalized to the range [-1, 1]. As the sum of the three
exposures falls into the range [0, 3], and the argument space of a
sigmoid function spans an [−∞,+∞] input range, large positive
residual values are expected in bright regions to push output val-
ues in IT M towards 1. Similarly, large negative residual values are
expected in dark regions to push output values in IT M towards 0.

feature space (Fig. 2). We first adapt the range of intensity values
by converting ISRC into IHDR as discussed in Sec. 3.1. As shown in
Fig. 4 (top row), IHDR still has a strong skew of its histogram towards
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low intensity values (typical for HDR images [EKD∗17,PKO∗21]),
which strongly differs from LDR image characteristics. Since LDR
images are typically used for training VGG, we resort to a µ-law
compression to correct the histogram of the image IHDR:

Iµ =
log(1+µIHDR)

log(1+µ)
, (2)

This algorithm is widely used in HDR image coding [JKX∗11]
and inverse tone mapping [WXTT, STKK20] to re-arrange pixel
intensity distribution. Fig. 4 (bottom row) shows an example of this
transformation, where image details become more visible and the
long tail in the histogram is corrected.

0 160 320 480 640 800100

102

104

106

0 0.5 1 1.5 2 2.5100

102

104

106

Log

Log

IHDR

Iµ

Figure 4: Image appearance and logarithmic histogram of pixel
intensities for a transformed HDR image. Top Row: IHDR with the
mean normalized to 0.5. Bottom row: Iµ derived using the adaptive
µ-law compression (Eqs. 2 and 3). Notice the dramatically different
scales on the x-axis.

Typically a fixed µ is used to derive the transformed image Iµ, but
as we show in the insets in Fig. 5 (left), the resulting image appear-
ance strongly depends on the selected µ value. We observe that the
choice of µ also affects greatly the performance of the VGG-based
loss that drives our tone mapping network, where larger µ values
are required for darker HDR images. We propose an adaptive µ-
law compression, where the µ value changes with the median pixel
intensity value iHDR that is computed for the IHDR image:

µ = λ1(iHDR)
γ1 +λ2(iHDR)

γ2 , (3)

with fitted parameter values λ1 = 8.759, γ1 = 2.148, λ2 = 0.1494,
and γ2 = −2.067. We derive this function experimentally for a
number of representative HDR images featuring different appear-
ances as well as different iHDR (i.e., brightness). We use the TMQI
quality metric [YW12] to select the best performing µ values, and
then by visual inspection we confirm this selection. Fig. 5 (right)
shows the fitted curve based on this procedure.

3.4. Feature Contrast Masking Loss

In this section we propose the feature contrast masking (FCM) loss
that guides our tone mapping network to reproduce image details

Figure 5: Left: Adaptive µ-law compression (Eq. 2) for different
µ values and the corresponding compressed HDR images. In this
case µ = 75.56 has been selected for this image using Eq. 3. Right:
Experimentally derived µ selection as a function of HDR image
median intensity iHDR.

and overall perceived contrast. To this end, we first model feature
contrast, and then introduce self contrast masking and neighbor-
hood masking for such feature contrast inspired by their analogues
in image domain described in Sec. 2.1.

Feature contrast. While the HDR image representation Iµ, which
results from the adaptive µ-law compression (Sec. 3.3), greatly fa-
cilitates its meaningful processing by the VGG network, still sig-
nificant intensity differences might exist with respect to its tone
mapped version ITM. Such intensity differences translate into corre-
sponding differences in the feature magnitude when Iµ and ITM are
transformed by the VGG network (Fig. 2). To further reduce such
feature magnitude differences we compute a per-channel local fea-
ture contrast:

Cp =
fp − f̄p
| f̄p|+ ε

, (4)

where fp denotes the feature magnitude at pixel p, f̄p is the
Gaussian-filtered feature value computed for the patch P (centered
at p), and ε is a small constant to avoid division by zero. We ex-
perimentally set the patch size P to 13×13 pixels (Sec. S1.2 in the
supplemental). To compute this contrast, the feature difference with
respect to its local neighborhood is first computed and then normal-
ized. This normalization enables further reduction of the impact of
the differences in absolute feature magnitudes between Iµ and ITM.
Note that Eq. 4 is aligned with contrast definitions for images that
also use Laplacian and Gaussian filter responses in the numerator
and denominator, respectively [Pel90]. More complex filter banks
such as Laplacian pyramids [MDC∗21], cortex transforms [Dal92],
wavelets [DZLL00], or discrete cosine transforms [Wat93] are of-
ten used for advanced contrast processing operations.

Feature contrast self-masking. An important property of con-
trast perception is a higher sensitivity to contrast discrimination
for lower contrasts than for supra-threshold contrasts [KW96], this
is termed contrast self-masking [DZLL00]. In the context of tone
mapping this means that even small contrast changes can be per-
ceived in low-contrast image regions, which are often neglected
in global tone mapping operators [MMS15]. Conversely, for larger
image contrast, even strong contrast compression might remain un-
detected. Many tone mapping operators take advantage of this ef-
fect [DD02, FLW02, MMS06]. Different from conventional meth-
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VGG(𝐼𝐼𝜇𝜇) 𝑀𝑀n 𝑓𝑓(VGG(𝐼𝐼𝜇𝜇))𝑀𝑀s𝐼𝐼TM

Figure 6: Feature contrast masking visualization of VGG feature maps (1st layer, 18th channel). From left to right: tone mapped image ITM,
original VGG feature map VGG(Iµ), feature contrast self-masking Ms, neighborhood masking Mn, and final f (VGG(Iµ)) masking terms.

ods, we do not model contrast self-masking in the image contrast
domain, instead we model it in the feature contrast domain C de-
fined in Eq. 4 (we skip the pixel index p for brevity):

Ms = sign(C)|C|α, (5)

where Ms denotes a non-linear response to the feature contrast mag-
nitude controlled by the compressive power factor α. The function
sign(x) = x

|x|+ε
preserves the feature contrast polarity in Ms. We

experimentally set αIµ = 0.5 when processing Iµ while we keep
αITM = 1.0 for ITM, allowing for visually pleasant low-contrast de-
tail enhancement (refer to Sec. S1.2 in the supplemental). Fig. 6
shows a feature map VGG(Iµ) for a selected VGG channel, as well
as the response Ms to feature contrast C. As shown in this fig-
ure, Ms vividly responds for low-contrast details in the sky and
rocks that are instead strongly suppressed in VGG(Iµ). Note that
when VGG(Iµ) is directly used in the perceptual VGG loss driv-
ing the tone mapping operation LVGG = ||VGG(Iµ)−VGG(ITM)||1
[JAFF16], such details are likely to be neglected in the resulting ITM

due to the low penalty in the loss.

Feature contrast neighborhood masking. Inspired by successful
applications of neighborhood masking, as discussed in Sec. 2.1, we
also model feature contrast neighborhood masking. Image contrast
neighborhood masking is performed selectively for different spa-
tial frequency bands; this requires image decomposition by a filter
bank [DZLL00, Lub95]. We approximate this process by model-
ing feature contrast neighborhood masking per channel, where fea-
tures with similar frequency characteristics are naturally isolated.
Our goal is to suppress the magnitude of Ms when there is a high
variation of feature magnitudes fp in the local neighboring of pixel
p that we measure as:

Mn =
σb

|µb|+ ε
, (6)

where µb and σb denote the mean and standard deviation of feature
magnitude fp in the patch P that is centered at pixel p. Again,
we experimentally set the patch P size to 13×13 pixels. Finally,
our feature contrast masking is calculated as the ratio of self- and
neighborhood masking:

f (VGG(I)) =
Ms

1+Mn
(7)

As can be seen in Fig. 6, Mn vividly responds in the regions with
high local feature variation as seen in VGG(Iµ), so that the final fea-

ture contrast masking measure f (VGG(Iµ)) is strongly suppressed
in such regions. In particular, this means that in regions with strong
image contrast, such as the horizon line, f (VGG(Iµ)) is relatively
much smaller with respect to the orginal VGG(Iµ) feature mag-
nitudes. Consequently, when including f (VGG(Iµ)) into the loss
computation that drives the tone mapping operation, the penalty for
any distortion of such high contrast is much smaller than in the per-
ceptual VGG loss LVGG that directly employs VGG(Iµ). Effectively,
this gives the tone mapping network more freedom for compressing
image contrast in such regions.

We compute our feature contrast masking (FCM) loss LFCM as the
L1 loss between the masked feature maps f () for the transformed
input HDR image Iµ and the output tone mapped image ITM:

LFCM = || f (VGG(Iµ))− f (VGG(ITM))||1 (8)

To further illustrate the behavior of our loss, In Fig. 7 we con-
sider simple sinusoid patterns with three different contrasts (c1, c2,
and c3). The corresponding feature maps of the VGG network are
shown in the top-left image row. We distort each sinusoid by in-
creasing their respective amplitudes by the same factor δ and their
corresponding feature maps are shown in the bottom-left row.

∆VGG(𝐼𝐼𝑐𝑐𝑛𝑛) = VGG 𝐼𝐼𝑐𝑐𝑛𝑛
′ − VGG 𝐼𝐼𝑐𝑐𝑛𝑛

∆FCM 𝐼𝐼𝑐𝑐𝑛𝑛 = 𝑓𝑓 VGG 𝐼𝐼𝑐𝑐𝑛𝑛
′ − 𝑓𝑓 VGG 𝐼𝐼𝑐𝑐𝑛𝑛

Feature maps from VGG

𝐼𝐼𝑐𝑐1
′ = 𝐼𝐼𝑐𝑐1+𝛿𝛿 𝐼𝐼𝑐𝑐2

′ = 𝐼𝐼𝑐𝑐2+𝛿𝛿 𝐼𝐼𝑐𝑐3
′ = 𝐼𝐼𝑐𝑐3+𝛿𝛿

∆FCM(𝐼𝐼𝑐𝑐2)∆FCM(𝐼𝐼𝑐𝑐1) ∆FCM(𝐼𝐼𝑐𝑐3)

∆VGG(𝐼𝐼𝑐𝑐2)∆VGG(𝐼𝐼𝑐𝑐1) ∆VGG(𝐼𝐼𝑐𝑐3)VGG(𝐼𝐼𝑐𝑐3)VGG(𝐼𝐼𝑐𝑐2)VGG(𝐼𝐼𝑐𝑐1)

VGG(𝐼𝐼𝑐𝑐1
′) VGG(𝐼𝐼𝑐𝑐2

′) VGG(𝐼𝐼𝑐𝑐3
′)

Figure 7: Left: VGG feature maps (1st layer, 2nd channel) for
three input sinusoids of increasing image contrast (c1 < c2 < c3)
(upper row) that are distorted by further increasing their ampli-
tudes by the same factor δ (bottom row). Right: the differences ∆VGG

between the VGG feature maps, which are computed for each sinu-
soid and its distorted version, show a weak dependence to the input
sinusoid contrast (upper row), while the corresponding differences
∆FCM resulting from our feature contrast masking model penalize
more strongly the distortion for smaller contrast sinusoids.
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We compare the feature map difference ∆VGG used in the VGG
loss LVGG [JAFF16] (top-right row) and the corresponding ∆FCM used
in our FCM loss LFCM (bottom-right row). As can be seen, ∆FCM

yields a higher penalty when the distortion δ is added to the lowest
contrast pattern. This forces our tone mapping, driven by LFCM, to
reproduce image details in low-contrast areas. The VGG loss LVGG

remains similar irrespectively on the input sinusoid contrast. This
puts equal pressure on the tone mapping network to reproduce im-
age details for large contrast regions that cannot be perceived, and
low-contrast regions where they are clearly visible.

Finally, we perform color correction in ITM following Tumblin
and Turk [TT99]:

C{R,G,B}
out = Lout(

C{R,G,B}
in

Lin
)s (9)

Lin/out = 0.2126∗R+0.7152∗G+0.0722∗B (10)

where Lin and Lout are the luminance of the input HDR image IHDR

and the output tone mapped image ITM respectively, and s is the sat-
uration control parameter (we use s = 0.6 in all examples). Since
we apply color correction as a post-processing operation, other al-
gorithms [MMTH09, APBA18] could be also applied.

4. Results and Ablation Study

In this section we first describe the implementation details of our
approach. Then, we provide objective and subjective comparisons
including both traditional methods and state-of-the-art learning-
based approaches. Finally, we perform an ablation study showing
how each of the components of our approach contributes to achiev-
ing the final quality of our results.

4.1. Implementation

We adopt an online training strategy and train a model for each
HDR image at test time. Our model is implemented on TensorFlow
1.10 and the results reported in the paper are computed with a RTX
8000 GPU. We use the Adam optimizer with an initial learning
rate of 2 × 10−4 and an exponential decay factor of 0.9 every ten
epochs. The training converges after 400 epochs, which translates
into around 583 ± 6.62 seconds, for an image resolution of 768 ×
384. We fix a single set of parameters for all our experiments and
results. As discussed in the previous section, we set P = 13×13,
αIµ = 0.5, and αITM = 1.0. We compute our loss function based on
the first three layers of VGG. Please refer to the supplemental for
experimental exploration of these parameters.

4.2. Results and comparisons

We include in our comparisons fourteen tone mapping op-
erators including ten traditional methods which for sim-
plicity we refer to as: Mantiuk [MMS06], Shan [SJB09],
Durand [DD02], Drago [DMAC03], Mertens [MKVR07],
Reinhard [RSSF02], Ma [MYZW15], Liang [LXZ∗18], Shi-
bata [STO16], and Li [LJZ18]; and four recent learning-based
methods: Guo [GJ21], Zhang [ZZWW21], DeepTMO [RSV∗19]
and TMO-Net [PKO∗21]. We use the publicly available implemen-
tations of these methods or if not available, their implementation

in HDRToolBox [BADC17]. For the case of DeepTMO [RSV∗19]
and TMO-Net [PKO∗21], we were not able to access their imple-
mentations, therefore we directly use the results provided in their
works for comparisons.

We use a large test set of 275 images gathered from
the Fairchild dataset [Fai07], Poly Haven‡, the Laval In-
door HDR Database [GSY∗17], and the LVZ-HDR benchmark
dataset [PKO∗21], which cover various indoors, outdoors, bright
and dark scenes.

4.2.1. Objective evaluation

For objective comparisons we adopt as metrics the Tone Mapped
Image Quality Index (TMQI) [YW12], the Blind Tone Mapped
Quality Index (BTMQI) [GWZ∗16] and the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [MMB12]. The for-
mer two metrics are widely used for evaluating tone mapping op-
erators [GJ21, ZZWW21, LXZ∗18], while the latter is typically
used as a blind metric for evaluating contrast [JYL19, LHLK17,
SWH∗20]. For completeness, we briefly discuss here these metrics.
Additionally, we compute contrast distortion maps (loss of visible
contrast and amplification of invisible contrast) between the tone
mapped results and the original HDRs using the Dynamic Range
Image Quality Assessment (DRIM) [AMMS08] metric (please, re-
fer to Sec. S4.1 in the supplemental).

TMQI is a full-reference tone mapping image quality metric,
which consists of two main terms assessing the structural fidelity
(TMQIS) and the naturalness (TMQIN) of the tone mapped image.
BTMQI is a no-reference tone mapping metric, which is composed
of three terms accounting for entropy (richness of information),
naturalness, and presence of structural details. BRISQUE is a well-
known no-reference image quality metric based on natural scene
statistics that quantifies the naturalness of an image and considers
distortions such as noise, ringing, blur, or blocking artifacts.

We show in Table 1 the results of these objective metrics to-
gether with computation times for eleven of the tested methods with
our testing set, while Table 2 shows the results for DeepTMO and
TMO-Net, for which we use their provided test sets and results.
We include examples of our results compared to the seven best per-
forming methods in Fig. 8, and compared to DeepTMO and TMO-
Net in Fig. 9. We include more results and comparisons in our
supplemental. Additionally, we show in Table 3 running times for
our method with Standard Definition and High Definition images.
Since we adopt an online training strategy, our network has to be
optimized for every different HDR image, resulting in moderately
high running times. We have explored two different techniques for
speeding-up computation: depth-wise convolutions [HZC∗17] and
progressive training (please, see Sec. S2.1 in the supplemental for
details). This allows to heavily decrease our running times with a
slight quality loss, still outperforming previous methods.

Our proposed approach outperforms previous methods in differ-
ent aspects. We discuss now more in detail results for the best per-
forming approaches. In general, all approaches except DeepTMO

‡ https://polyhaven.com/hdris
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Table 1: Mean and standard deviation for TMQI (including TMQIS and TMQIN), BTMQI and BRISQUE computed for the 275 images in
our test set, and average computing time for an image with 768 × 384 pixels resolution.

Methods TMQI (↑) TMQIS (↑) TMQIN (↑) BTMQI (↓) BRISQUE (↓) time (s)
Ours 0.9248 ± 0.0432 0.8938 ± 0.0582 0.7062 ± 0.2369 2.9065 ± 1.0481 21.2208 ± 8.5981 583.26

Guo [GJ21] 0.8883 ± 0.0354 0.8166 ± 0.0762 0.5975 ± 0.2002 3.7110 ± 1.0239 23.9528 ± 8.2566 0.0283
Zhang [ZZWW21] 0.8767 ± 0.0600 0.8343 ± 0.0872 0.5118 ± 0.2686 3.7440 ± 1.4209 22.0520 ± 8.9580 0.0021
Liang [LXZ∗18] 0.8964 ± 0.0490 0.8534 ± 0.0737 0.5194 ± 0.2605 3.5333 ± 1.0915 25.1433 ± 8.5510 1.1266
Shibata [STO16] 0.7689 ± 0.0506 0.7498 ± 0.0858 0.1203 ± 0.1719 4.3470 ± 0.7469 32.2273 ± 8.9383 11.655

Li [LJZ18] 0.8480 ± 0.0612 0.8301 ± 0.0743 0.3716 ± 0.2939 4.3670 ± 1.1621 24.0348 ± 8.5411 3.5321
Shan [SJB09] 0.8301 ± 0.0732 0.7458 ± 0.1448 0.4174 ± 0.2792 4.0685 ± 0.9839 22.8230 ± 8.5913 50.287

Durand [DD02] 0.8719 ± 0.0669 0.8375 ± 0.0989 0.4824 ± 0.2685 3.6537 ± 1.1016 22.0285 ± 8.4576 0.0665
Drago [DMAC03] 0.8794 ± 0.0537 0.8600 ±0.0803 0.4840 ± 0.2558 4.0213 ± 1.2733 22.6600 ± 8.2405 0.0974

Mertens [MKVR07] 0.8425 ± 0.0717 0.8403 ± 0.0923 0.3373 ± 0.2848 4.8981 ± 1.6026 23.2085 ± 8.8589 1.4282
Reinhard [RSSF02] 0.8506 ± 0.0533 0.8176 ± 0.0864 0.3903 ± 0.2347 4.2774 ± 1.4580 25.5317 ± 7.7396 0.2393
Mantiuk [MMS06] 0.8529 ± 0.0753 0.8903 ± 0.0849 0.3238 ± 0.3050 4.5339 ± 1.4086 21.2943 ± 8.8302 1.8733

Ma [MYZW15] 0.8782 ± 0.0698 0.8644 ± 0.1043 0.4782 ± 0.2458 3.6444 ± 1.6857 24.9172 ± 8.0956 3225.4

Table 2: Mean and standard deviation for TMQI (including TMQIS and TMQIN), BTMQI and BRISQUE computed for the
DeepTMO [RSV∗19] and TMO-net [PKO∗21] test sets. The former contains 100 images from the Fairchild dataset [Fai07] while the latter
contains 457 captured images from their own dataset.

Methods TMQIQ (↑) TMQIS (↑) TMQIN (↑) BTMQI (↓) BRISQUE (↓)
Ours 0.9106 ± 0.0511 0.8987 ± 0.0664 0.6052 ± 0.2807 3.3420 ± 1.0686 19.5406 ± 9.1347

DeepTMO [RSV∗19] 0.9052 ± 0.0619 0.8810 ± 0.0717 0.6015 ± 0.2679 3.4230 ± 1.1502 27.5489 ± 7.6865
Ours 0.9073 ± 0.0541 0.8939 ± 0.0551 0.6020 ± 0.3126 3.3069 ± 1.2266 23.1010 ± 8.5232

TMO-Net [PKO∗21] 0.8609 ± 0.0594 0.8066 ± 0.0825 0.4723 ± 0.2871 3.9633 ± 1.2477 26.6078 ± 8.1895

Table 3: Computation times for our method with Standard Defini-
tion (SD, 720 × 480) and High Definition (HD, 1080 × 720) im-
ages for our baseline method and our two proposed techniques for
speeding-up the computation: depth-wise convolutions [HZC∗17]
and progressive training.

Methods Time-SD (s) Time-HD (s)
Ours 654.72 1245.7

depth-conv 223.74 486.57
depth-conv & pro-training 126.28 251.36

yield low TMQIN values, indicating that they fall short in preserv-
ing the naturalness of the image. For the case of DeepTMO, the
low performance in the BRISQUE metric indicates that the tone
mapped images do not preserve natural image statistics (Fig. 9, first
three columns). We can also see that TMO-Net additionally pro-
duces saturated results in the brightest regions of the image (Fig. 9,
last three columns). Looking into Fig. 8 we can observe that Guo
over-enhances dark regions, sometimes resulting in heavy artifacts
(garage scene), while Zhang tends to produce overly dark results
in regions with low brightness. This is in agreement with a rela-
tively low score in structural fidelity TMQIS, indicating that the
tone mapped images differ from the HDR in terms of conveyed
structural information. While Liang and Ma perform well in terms
of TMQIS, they tend to produce under-saturated results with lower
contrast (e.g., garage and store scenes), which is in agreement with

a relatively low performance in the BRISQUE metric. Drago and
Durand also perform well in terms of TMQIS. However, we can
see that Drago produces blurry results and fails to reproduce fine
details, such as the floor tiling in the station scene or the highlights
of the bottles in the store scene. Durand presents good scores in
terms of BRISQUE score which means the tone mapped images do
align with natural image statistics, however in some cases it over-
enhances contrast, producing artifacts such as those around the car
windows in the garage scene or those in the luminous numbers
of the station display sign. Mantiuk has the lowest TMQIN of the
methods included in Fig. 8. This operator tends to produce very
dark images with low contrast.

Our method outperforms existing approaches for all tested met-
rics, exhibiting a good contrast reproduction while preserving the
details present in the HDR images. Our results also produce natural
images without visible artifacts.

4.2.2. Subjective evaluation

To further validate the performance of our approach we addi-
tionally performed a subjective study. We included the six most
commonly used, best-performing methods in terms of average
TMQI score according to our previous objective evaluation, in
particular: Guo [GJ21], Zhang [ZZWW21], Liang [LXZ∗18],
Drago [DMAC03], Durand [DD02], and ours. The study was ap-
proved by the Ethical Review Board of the Computer Sciences de-
partment at Saarland University, and participants provided written
consent for participating in the study. A total of twelve participants
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Figure 8: Visual comparisons for the best performing methods and their TMQI scores. Overall, our results achieve good contrast reproduc-
tion while preserving the details (highlights of the bottles in store, floor in station) and avoiding visual artifacts (display sign in station, car
edges and windows in garage). Please refer to the text for an in-depth discussion of the observed differences.
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Figure 9: Visual comparisons for DeepTMO [RSV∗19] and TMO-Net [PKO∗21] on images from their respective test set. DeepTMO tends
to produce over-enhanced contrast and saturated results that do not preserve natural image statistics. TMO-Net can not handle some chal-
lenging scenarios, producing saturated results in very bright regions and overly dark pixels in dark regions.

(aged 25 to 34 years old with normal or corrected-to-normal vi-
sion) voluntarily took part in the study. We included fifteen scenes
covering different scenarios and, for each scene, we showed the six
tone mapped images at a random order. We asked the participants
to rank them from 1 (preferred) to 6 (least preferred). Before the
study, participants underwent a simple training with a few images
showing common artifacts in tone mapped images such as over-
saturated colors, over- or under-exposure, contrast loss and contrast
over-enhancement. The study was conducted in a room with natural
illumination and participants sat at a distance of 0.5 meters from the
display. The images were displayed in a DELL UltraSharp U2421E
monitor (1920 × 1200 resolution, 60 HZ refresh rate).

We show in Fig. 10 the preference rankings for each method,
aggregated for all participants and scenes. We use Kruskal-Wallis
(non-parametric extension of ANOVA) for analyzing the rankings,
since these do not follow a normal distribution [JMB∗14,RGSS10].
We then compute post-hocs using pairwise Kruskal-Wallis tests ad-
justed by Bonferroni correction for multiple test. Results reveal a
statistically significant difference in the rankings for the different
methods (p < 0.001), with our approach being ranked significantly
higher than all others (refer to Sec. S3 in the supplemental for for
individual results for each scene and statistical tests for all pairwise
comparisons).

4.3. Ablation Studies

In this section we evaluate the importance of each of the compo-
nents in our method for achieving the final quality of the results.
Table 4 shows the results of the objective metrics for different com-
binations of (i) input: linear HDR [RSV∗19], log HDR [ZWZW19,
SWL∗21] or our multiple exposure inputs (MEI); (ii) HDR com-
pression algorithm for computing the loss: linear, log or our adap-
tive µ-law compression (Ada µ); and (iii) loss function: LVGG or our
LFCM. Fig. 11 shows the corresponding visual results. Please, refer
to the supplemental for extended results on the ablation.

In general, we can see that our loss LFCM, which considers mask-
ing effects, plays an important role in emphasizing the local con-
trast, especially in large contrast regions, such as the clouds in the
sky. Compared with our MEI, the logarithm input leads to overall
darker results (brightness distortion), and the linear input can cause

Figure 10: Preference rankings for each method aggregated across
the twelve participants and fifteen scenes. Different colors indicate
the received rankings (from R1 to R6). Pairwise comparisons be-
tween methods reveal that preference rankings are significantly dif-
ferent, except those methods marked in the same set (gray squares),
which are statistically indistinguishable.

overexposure with missing information in the highlight regions. Fi-
nally, we can see that the Ada µ-law compression is important for
overall image contrast, when linear or logarithmic transformations
are applied instead, the resulting images are flatter in terms of con-
trast.

5. Conclusions

In this work we propose an image-specific self-supervised tone
mapping approach that leads to consistent high-quality results for
a large variety of HDR scenes. Previous learning-based approaches
present two main limitations: (i) the variety of HDR content they
can adequately tone map is limited by the images used during train-
ing, and (ii) most of these approaches are supervised, i.e., they need
HDR-LDR image pairs for training. These LDR images are ob-
tained either from tone mapped results from previous methods, or
manually tone mapped images. Therefore, the quality of the learned
tone mapper is limited to that of the selected training pairs. In con-
trast, our learned tone mapping operator is guided by a novel fea-
ture contrast masking loss that allows to represent in feature space
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Table 4: Mean and standard deviation for TMQI (including TMQIS and TMQIN), BTMQI and BRISQUE computed for different variations
of components in our pipeline.

Input IHDR 7→ Iµ Loss TMQI (↑) TMQIS (↑) TMQIN (↑) BTMQI (↓) BRISQUE(↓)
log log LVGG 0.5785 ± 0.1073 0.3759± 0.1965 0.0066± 0.0578 6.6324 ± 0.5731 42.5287 ± 7.4740

MEI linear LFCM 0.8776 ± 0.0610 0.8763± 0.0966 0.4555 ± 0.2642 3.9174 ± 1.4472 21.4104 ± 8.9001
MEI Ada µ LVGG 0.9178 ± 0.0462 0.8913 ± 0.0607 0.6596 ± 0.2470 3.1934 ± 1.1220 22.1773 ± 8.6294
linear Ada µ LFCM 0.8522 ± 0.0793 0.8166± 0.1206 0.4173 ± 0.2902 4.5342± 1.6754 30.2186 ± 13.7742
log Ada µ LFCM 0.8166 ± 0.0563 0.8921 ± 0.0774 0.0844 ± 0.0741 5.0949 ± 1.1779 22.4499 ± 8.3301

MEI Ada µ LFCM 0.9248 ± 0.0432 0.8938 ± 0.0582 0.7062 ± 0.2369 2.9065 ± 1.0481 21.2208 ± 8.5981

Input Loss
log log ℒVGG

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
MEI linear ℒFCM

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
MEI Ada 𝜇𝜇 ℒVGG

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
linear Ada 𝜇𝜇 ℒFCM

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
log Ada 𝜇𝜇 ℒFCM

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
MEI Ada 𝜇𝜇 ℒFCM

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁

Figure 11: Example visualizations of our ablation study. Better contrast, brightness and detail reproduction is achieved with our full pipeline
including multiple exposure inputs (MEI), adaptive µ-law compression (Ada µ), and LFCM loss.

important image contrast perception characteristics of the Human
Visual System. The loss gives the network more freedom for com-
pressing higher contrast while enhancing weak contrast, as it is of-
ten desirable for high quality HDR scene reproduction and an over-
all pleasant appearance, all in the context of local image content as
modeled by neighborhood masking.

Limitations and future work In some rare cases our method may
produce soft halos at high contrast edges as shown in Fig. 12. In
future work we would like to experiment with edge stopping fil-
ters while deriving feature contrast and neighborhood masking for
avoiding this issue. Nevertheless, these soft artifacts are not present
in most of our results, and whenever present, they are not obviously
visible as confirmed by both objective and subjective evaluations.
As discussed in Trentacoste et al. [TMHD12], unsharp masking or
weak counter-shading effects, similar to these soft halos, may be
an effective way of enhancing perceived image contrast due to the
Cornsweet illusion and are often employed for image enhancement.
Our initial attempts at offline training (Sec. S2.3 in the supple-
mental) could not match the quality of our online training. This is
somewhat expected since generalization is more challenging than
dealing with a single image. This remains an interesting avenue
for future work, since it would significantly decrease computation
time. We would also like to investigate the utility of our adaptive µ-
law compression for other learning-based applications that involve
HDR content. Finally, another interesting avenue for future work
would be employing our feature contrast masking model for other
tasks such as image style transfer, where contrast characteristics in
the source image should be conveyed to the target image.

Figure 12: Example exposure of the original HDR image (left) and
our tone mapped result (right). The inset shows a failure case in
which a soft halo appears around the edge of the mountain.
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